
UNCLASSIFIED

AD275 0 55

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



ACESD T -< - 62

Table of Contents

Abstract.................................................... i

Introduction ................................................. I

The Drag Formula ............................................ 2

AinendessI.............................................. .9

Wienes Ratio....................... ................ ........ 67

Wpeits .................................................... 79

Appendix 11.................... .............................. 12 I
List of Symbols ............................................... 18
References .................................................. 19 4

Distribution List ............... .............................. 20

List of Figures

Figure 1, Blunted Cone-Sphere Configuration ................... 14

Figure 2, Graphs Of CD vs 17.............................. 15

Figure 3, Graphs of W/Rb 2 vs 17............................... 16

Figure 4, Graphs of Fineness Ratio vs ................. 17

~'1Rrl::A

,1AI

N -



vi

ABSTRACT

A simple formula for the Newtonian drag coefficient is derived

for the blunted cone-sphere ("ice-cream cone") at small angles of attack. Graphs

are presented for CD as a function of cone semi-vertex angle from 60 to 300 and

"bluntness ratio" (nose-radius/base-radius) ranging in tenths from 0 to 0. 5. For

given values of the body parameters, the weight required for the body to attain a

prescribed ballistic coefficient is then determined. Fineness ratios for different

specified cone-angles and degrees of bluntness are provided for reference.
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Introduction. Newtonian impact theory makes two basic assumptions:

first, that the shock wave lies along the body-surface; second, that in striking the

body, the airstream loses the component of momentum normal to the surface - - the

flow is regarded as continuing along the surface with the tangential component of

momentum unchanged.

The local pressure coefficient obtained under the Newtonian hypothesis

therefore depends only on the local inclination of the surface to the airstream:

Vn 2
Cp =2 va"

where v* and vn are the free-stream velocity and its component normal to the body-

surface respectively. C is taken to be zero over those portions of the surface

shielded from the flow.

The second of the basic assumptions made above neglects centrifugal

forces associated with curvature of the body surface, and the condition of the first

assumption is attained only in the limit as M -*,-y-O. (ML is the free-stream

Mach number and y the ratio of specific heats. ) In this connection, the relevant

parameter appears not to be the Mach number itself so much as the ratio M./F,

where F is the body fineness ratio

F Total body-length/Maximum body-diameter.

* See Appendix I.
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For values of Me/F less than 2 for example, Newtonian estimates of the local

pressure coefficient for cones have been found 2 to be in error by more than 17%. On

the other hand, Newtonian theory has been found to give qualitative and even quanti-

tative information of acceptable accuracy in practical cases of interest at hypersonic

speeds, and the following computations of drag coefficients and related quantities

should prove useful even at high altitudes when the contributions of viscous effects *

and ablation are incorporated.

The following sections are concerned with a single configuration at

small angles of attack. The body studied consists of a cone-frustum capped at both

ends by tangent spherical surfaces. Cone semi-vertex angles between 60 and 300 are

considered with bluntness ratios (nose-radius/base-radius) ranging in tenths from

0 to 0. 5. Under the assumption of negligible pitching and zero angle of attack, a

simple formula is derived for the corresponding Newtonian drag coefficients. This

was programmed for the IBM 7090, and the tabulated values of CD so generated have

been presented in graphical form. Also presented are estimates (based on CD) of the

weight required for the body to have a prescribed ballistic coefficient. Fineness ratios

are given for reference.

The Drag Formula. The blunted cone-sphere configuration to be

considered has rotational symmetry. A coordinate system will be chosen with origin

at the nose and x measured along the axis of symmetry. (See Figure 1. ) With the

surface then described by the radial distance R = R (x), the axial -force coefficient

CX may be found by integration over the surface actually exposed to the flow:

* These are relatively important for sharp-nosed bodies during early re-entry.

A ~"I"
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CX = si- Cps dSOI

where A is the reference-area and 0 = arctan R'(x). *

If the angle of attack is small, so that the entire surface between the

planes x = 0 and x = t, is that exposed to the flow, and if furthermore the angular

pitch-rate q is negligible in comparison with the velocity v', then integration and

simplification ** lead to an approximate expression for the drag coefficient.

CD = CX 4 R(x) R'(x)3 dx (0)C DEi = Co 1 + R '(x) 2

where the interval [o, t, I is to be broken into three segments corresponding to the

different definitions of R over the nose, midsection, and base of the body.

A spherical tip of radius Rn is generated by revolving a segment of the

circle [x - Rn] 2 + RR(x) 2 = 2; the radial distance for the nose portion of the

body is therefore

R = 2Rn x -x 2 ] 1/2 for 0-xx 1 , (i)

• See Appendix I.

** See Appendix I.
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where tangency occurs at x1. We denote by i? the (constant) semi-vertex angle of the

conical midsection, and note that

x, = Rn -R n sint7

The radial distance for the midsection is them simply

R = [x+xl/sin 7] tan / forx, _5xx 2 , (2)

where the spherical back, having radius Rb. is tangent at

x 2 = t - Rb sin 77.

Finally, the portion of the spherical back which is not shielded from the airstream has

radial distance

R = [R 2 - (x - t' )211/ 2  forx 2 _-x _:, (3)

where the maximum radius of the body is Rb = R(t. )

Computation of CD as represented by equation (0) thus requires the

integration of three separate expressions,R being defined in the respective intervals

as noted above:
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(Rnx)3 /Rn2 for 0 s x : x,

RR' 3  RR' sin2 7 forx <xxx 2,  (4)

(t. - X) 3/Rb2 for x2 !5 x -<
II

b2

The second expression is easily handled with R as independent variable going between

Rn cos tj and Rb cos ij, and the other two integrations are routine.

We shall find it convenient now to take as reference-area the maximum

cross-section of the body,

A =lRb .

Substitution and integration of (4) in equation (0) then yields

CD = 2 (l - si 4 )+2( - K2 ) sin2 7cO +sin4 (5)

where we have introduced the "bluntness ratio" K = Rn/Rb as a convenient parameter.

A trigonometric identity now gives a simple formula for CD as a function of K and 77:

CD = K cos 4 17+ [ 2 - sin2 17] sin2 7. (6)

The same technique demonstrated above has been used to find CD for

the case of a blunted cone which has a flat back at distance x = L from the nose. The

corresponding formula (obtained on replacing x2 by L in equation (4)) is offered for

comparison:

CD =K 2 cos 4  + 2 sin2 1 (flat back).
tD
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The obvious similarity of the two expression conforms to the expected similarity of

body-shape when t7 is small. It should be noted that the formula we have derived for

the cone with spherical back differs from the flat-back case not only in the presence

of a (sin4 7)-term whose contribution may be negligibly small if K/i is large; but

also, for a given nose-radius, base-radius, and exposed body-length t, the spherical

back gives a larger semi-cone angle 17 than does the flat back.

A final simplification of equation (6) gives a concise formula for the

Newtonian drag coefficient of a blunted cone-sphere at small angles of attack:

CD = I- [I - K2 ] cos 4 7

where ic = Rn/RbandA = 1Rb2 .

Fineness Ratio It is easy to verify that the semi-vertex angle 17 in a

blunted cone-sphere satisfies the relation

sin 77 = (Rb- Rn )/(t. - R ).

If the total body length is denoted by L, then t. = L - Rb, and we may use the fact

that the fineness ratio is F = L/ 2Rb to write instead

sin 1- (1 - K)/(2F - [ +l),

determining the angle t7 when the ratios of Rn , Rb, and L are known. The relation

between q and F expressed by this equation is presented graphically for different

values of the bluntness ratio K in Figure 4.

4 -
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It may be of interest for comparison to note that the semi-vertex angle

1' for a flat-backed cone satisfies the relation

sin n' = (Rb cOs 7' - Rn)/(L - Rn),

where for this case t = L: It follows that if a cone with spherical back were to have

the same bluntness and fineness ratios, it would have to have a (larger) semi-vertex

angle 77, determined by the ratio

sin - I-
s in w7 (cos n'- sin n7' K

Weights. While nearly constant over considerable altitude ranges in

the case of blunt-nosed bodies, the ballistic coefficient (or "weight-to-drag" ratio)

W/CDA may vary appreciably at high altitudes for sharp-nosed bodies. Viscous drag

is relatively insignificant at 50, 000 feet however, and common usage seems to base

W/CDA on the (pressure) drag at this altitude when no further qualification is mention-

ed. Since maximum deceleration of a high performance re-entry body might be ex-

pected to occur at an even lower altitude (determined by the ballistic coefficient and

the re-entry path angle), the Newtonian value of CD may therefore prove useful in

estimating the weight required for a specified ballistic coefficient to be attained.

If the desired ballistic coefficient is f, then substituting for the

reference-area A gives

W/Rb= WCDUo

!' :<
i
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The accompanying graphs of W/R2 vs 1 for different values of K are based for

W/b

scaling convenience on a ballistic coefficient of 100 lbs/ft2 . Hence, for a given semi-

vertex angle 7 (degrees bluntness ratio c, and base-radius Rb(ft), the weight W (lbs)

necessary for a ballistic coefficient p (lbs/ft2 ) is given by

W = [W/Rb 2 ].Rb2 . _'0

b 100

where the expression in brackets is the value read off from the appropriate curve.

A
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APPENDIX I

The component of free-stream velocity V, which is in the direction

of a normal 11 to the surface-element dS has magnitude

11
vn = v cos .4

n 00 VO0

so the mass striking dS normally in unit time is the product of the volume generated

and the free-stream density p,:

dm = po (vn dS).

The rate of change of momentum of the mass striking dS in the direction of the

normal gives the local pressure-force

dF = (p- P..) dS = vndm = p. v2dS

n =p 0 nd

where p and p.. are the local pressure and the free-stream pressure respectively.

As a function of the local pressure difference (p - p..) and the free-

stream dynamic pressure

q . 2
% = 7P 0 v.

the local pressure coefficient

vn  2 2:v

Uv

Cj
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thus depends only on the local inclination of the surface to the airstream. (The

flow is considered to be completely separated with C= 0 over those portions of the
pj

surface shielded from the flow.)

We are concerned with a smooth body having axial symmetry. Its

surface, accordingly, may be described by giving the radial distance R as a differ-

entiable function of just the distance x measured from the nose of the body (as origin)

along the axis of symmetry The local inclination of the surface with respect to

this axis is then

0 = 0 (x) = arctanR'(x)

When there is an angle of attack a, the local pressure coefficient

varies not only with x but also with the angle w measured in a plane orthogonal to

the axis. (See Figure L ) Cp is thus dependent on a, 0, and w.

The above relations being understood, the force acting on an area -

element dS may be expressed simply as

dF = q. C p dS

The component of this force in the direction of the axis is then (sin 0)dF, and

integrating over the portion of the surface actually exposed to the airstream gives

the total axial force

F = qSCp sin 8 dS. 4

* See Appendix II.

AA



The non-dimensional axial-force coefficient Cx , defined with respect to the

reference-area A by the relation

FX =q(CxA),

may therefore be represented in the following form:

CX = " C sin 0 dS.X A p

Expressing the element of area d S by (R dw) (dx/cosO) and substituting formally

then gives

cx=+S(SC, RR'dw wdx

with integration limits corresponding to the surface exposed to the flow.

A:
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APPENDIX II

The longitudinal axis of symmetry of the body, directed positively

back from the nose, has been chosen as the X-axis of the body coordinate system.

The free-stream velocity vector is assumed to be at a small angle of attack a (of

no greater magnitude than 17) relative to the X-axis, determining with it a plane in

which pitching occurs about the center of gravity Xcg at an angular rate q.

With these conventions, the local normal component of velocity

vn may be expressed I ' 3 in the form

vn =v, cos c [sin 0 -tan asinwcos 0 ]qsinw [(x -xcg)cos 0+RsinO],

or equivalently, upon substituting for cos 0 and tan 0,

Vn(x, W) v 00COS a R' - sin w q c [RR',+x_-xg + tan ceI

nl+R' 2  VO COS ag

It then follows from definition of Cp that

Cp (x, a, W) = 2cos 2  (R' -Gsinw) 2

I +R ' 2

where

G(x) = q [RR'+x-xcg] +tana.

VG0 Cosa
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The entire surface corresponding to 0 _ x _5 t, and 0 w 5: 2w is

exposed to the flow at small angles of attack (a < 71), so the surface integral defining

CX may be evaluated as an iterated integral with these limits on x and W. Taking

advantage of symmetry, we obtain

t "f + /2

Cx o -/ 2 R (x) R' (x) Cp (xa, )dwdx.

It remiains to substitute for C in the form obtained above:

/2 (R- - Gsin w)2 dw = (2R ' 2 +G 2)

,. Cx = os x c a+ 2 -$o 2 (Gcos a) dx.
LA I+R,2 0 1+R

The drag-force is directly opposed to the body's velocity-vector (relative to the flow)

at an angle a from the axis, and the integrand on the right is clearly bounded with q,
2Hence the relation cos a - 1 for small a and the assumption that (q/v,,) is negli-

gible leaves just the bracketted expression asserted in equation (0)_

i!
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List of Symbols

a angle of attack (from body axis to relative-velocity vector)
x, R, w cylindrical coordinates, x along axis of symmetry

R (x) body-radius in (R, w) - plane

R' (x) rate of change of body-radius along axis of symmetry

Xcg body center of gravity (distance from nose)

Rn , Rb nose-radius, base-radius of body

K "bluntness ratio", Kc = Rn/Rb

total length exposed to flow, "wetted" length

L total length of body

F fineness ratio, F = L/ 2Rb

77 semi-vertex angle for conical midsection

0 local inclination of body surface, 0 = arctan R' (x)

q angular pitch-rate about transverse axis through Xcg

p, C local pressure, local pressure coefficient

P 1, free-stream pressure, free-stream density

vo M 0 free-stream velocity, free stream Mach number
1 2

q. dynamic pressure, q = o, v.,

v ncomponent of free-stream velocity normal to body surface

A reference-area for non-dimensional coefficients

C axial-force coefficient, CX = axial force/q. A

CD drag-force coefficient, CD = drag foice/q. A

5'i
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